
Markov

Checkout Markov project from SVN

 Wednesday, 10:30 – 2:00 in the Union lobby
◦ You have a 15-min time slot where your whole team can

be there

◦ You’ll demo on a projector; anyone can watch

◦ If it’s too sunny, then go to a nearby (PA?) room

 Each person will
◦ talk for ~1 minute about a technical facet of the program

to which they contributed

◦ be prepared to answer questions about the project

 Be professional!
◦ Be prepared

◦ Dress nicely

Time Team

3rd hour

10:35 8

4th hour

10:50 2

11:05 4

11:20 3

5th hour

11:45 6

12:00 7

12:15 9

6th hour

12:40 5

7th hour

1:35 1

 Complete survey on ANGEL by start of class
Thursday
◦ Lessons Project Forms Team Performance

Evaluations

 Failure to complete the evaluations will result
in a letter grade deduction on your individual
team project score

 Due to Wednesday’s presentations, Friday’s
class will be optional

 But for those who are here, it will be a great
time to work on the Markov project,
especially if you are working with a partner

Details

 Input: a text file
the skunk jumped over the stump

the stump jumped over the skunk

the skunk said the stump stunk

and the stump said the skunk stunk

 Output: a randomly
generated list of words
that is “like” the original
input in a well-defined
way

 Gather statistics on word patterns by building
an appropriate data structure

 Use the data structure to generate random
text that follows the discovered patterns

 Input: a text file
the skunk jumped over the stump

the stump jumped over the skunk

the skunk said the stump stunk

and the stump said the skunk stunk

Prefix Suffixes

NONWORD the

the skunk (4),
stump (4)

skunk jumped, said,
stunk, the

jumped over (2)

over the (2)

stump jumped, said,
stunk, the

said the (2)

stunk and,
NONWORD

and the

 Input: a text file
the skunk jumped over the stump

the stump jumped over the skunk

the skunk said the stump stunk

and the stump said the skunk stunk

Prefix Suffixes

NW NW the

NW the skunk

the skunk jumped,
said, the,
stunk

skunk jumped over

jumped over the

over the stump,
skunk

the stump the, jumped,
stunk, said

…

 n=1:

the skunk the skunk

jumped over the

skunk stunk

the skunk stunk

 n=2:

the skunk said the

stump stunk and the

stump jumped over

the skunk jumped

over the skunk stunk

 Note: it’s also
possible to hit the
max before you hit
the last nonword.

 For the prefixes?

 For the set of suffixes?

 To relate them?

Prefix Suffixes

NW NW the

NW the skunk

the skunk jumped,
said, the,
stunk

skunk jumped over

jumped over the

over the stump,
skunk

the stump the, jumped,
stunk, said

…

 FixedLengthQueue: a specialized data structure,
useful for Markov problem

 Check out FixedLengthQueue
 Working alone? See your individual repo.
 Working with a partner? See your new Markov repo.

 Work to implement it in the next 25 minutes or so
 When you finish, read the (long) Markov

description and start coding
 We will only do milestone 1 (so no text

justification)

01, breenjw,runchemr

02, hugheyjm,weavergg

03, hannumed,woodhaal

04, labarpr,

05, macshake,mcgeevsa

06, pedzindm,parasby

07, eatonmi,

08, correlbn,shinnsm

09, smebaksg,

10, moravemj,wanstrnj

11, cheungkt,ngop

12, duganje,

13, carvers,krachtkq

14, lemmersj,

15, popenhjc,

16, beaversr,davidsac

17, amanb,

18, foltztm,

19, sheetsjr,

20, walthagd,

http://svn.csse.rose-hulman.edu/repos/csse220-201030-markov-teamXX

Review HW description,

Work on Markov for rest of
class

The following slides may have
some helpful hints

 Example to the left shows the queue
as elements are added
◦ We’ll only add, no remove

 What do you need to implement this?
◦ Array whose length is the capacity of the

FLQ

◦ Index at which to add the next element to
the FLQ

 This index increases by 1 as you add
elements, but “wraps” back to 0 when it
reaches the capacity of the FLQ

◦ Current size of the FLQ

 As opposed to the capacity of the FLQ

Arrow shows the point at which next to add data

a

a b

a b c

a b c d

a b c d e

f b c d e

Input:

Blessed are the poor for

they will be Blessed are the

peacemakers for they will

find Blessed are meek for

they will be Blessed are

Inspired by Matthew 5:3-9

Prefix (n = 2) Suffix

NONWORD NONWORD Blessed

NONWORD Blessed are

Blessed are the the meek NONWORD

are the poor peacemakers

the poor for

poor for they

for they will will will

they will be find

will be Blessed Blessed

be Blessed are are

the peacemakers for

peacemakers for they

will find Blessed

find Blessed are

are meek for

meek for they

are NONWORD NONWORD

To generate a new phrase,

start with NONWORD NONWORD

and “follow the chain”, but

choose at random from

eligible suffixes

Prefix (n = 2) Suffix

NONWORD NONWORD Blessed

NONWORD Blessed are

Blessed are the the meek NONWORD

are the poor peacemakers

the poor for

poor for they

for they will will will

they will be find

will be Blessed Blessed

be Blessed are are

the peacemakers for

peacemakers for they

will find Blessed

find Blessed are

are meek for

meek for they

are NONWORD NONWORD

Use a Fixed-Length Queue

whose length is n

Use a MultiSet

• Stores each word with its

multiplicity

• Has:
• size()

• findKth(int k)

• To “pick at random” from a

MultiSet, generate a random

number, k, between 0 and
size(), then call

findKth(k) to get the

random word

Wk-3Wk-4 Wk-2 Wk-1 wk wk+1
• When building the map: the
word that follows the given
prefix
• When generating from the
map: random but according to
the data distribution

Implement as a

Fixed-Length Queue

whose length is n

This mapping is what we want to

generate new data from the existing

data, using a Markov Chain

Implement by choosing

at random from the

mapped MultiSet

Implement the mapping as a
HashMap<String, MultiSet>

where the String is the

concatenation of the words in the

Fixed-Length Queue, and the

MultiSet is the set of words that

follow that String in the input Do you see why

these are good data

structures for this

problem?

Wk-4 Wk-3 Wk-2 Wk-1 Wk

Wk-3Wk-4 Wk-2 Wk-1 wk

FLQ:

String
(key):

Previous
MultiSet

Previous MultiSet
plus wk+1

toString

get the MultiSet from the

HashMap<String, MultiSet>,

using this key

If the MultiSet is null, construct the

MultiSet and put it into the HashMap.

In any case, add wk+1 to the MultiSet

add wk+1

(the next

word in the

input file) to

the FLQ

The loop ends

when the input

file is empty.

Follow the

loop by putting

NONWORD

as wk+1 n

times.

Initially, the FLQ

contains NONWORD

at all indices and

wk+1 is the first word

of the input

Wk-4 Wk-3 Wk-2 Wk-1 Wk

Wk-3Wk-4 Wk-2 Wk-1 wk

FLQ:

String
(key):

MultiSet

toString

get the MultiSet from the

HashMap<String, MultiSet>,

using this key

Choose wk+1 randomly from

the MultiSet, using

findKth(random number

between 0 and size of the

MultiSet)

add wk+1

(the

generated

word) to

the FLQ

The loop ends

when

NONWORD is

generated or

you get to the

maximum

number of

words.

Initially, the FLQ

contains NONWORD

at all indices

Wk+1

 Scanner scanner =

new Scanner(

new File (

this.pathToInputFile)));

while (scanner.hasNext()) {

String word = scanner.next();

...

}

